技术文章
新能源电动汽车能量管理与回收系统教学方案
发布于2019-07-04 02:29:31 文章来源:本站
课 题:电动汽车能量管理系统
教学目的:
了解什么是电动汽车能量管理控制系统,
掌握电池管理系统的功能
理解纯电动汽车能量管理系统的组成、混合动力电动汽车的能量管理策略好工
一、电池管理系统的功能2
1.概述
电池管理系统是集监测、控制与管理为一体的复杂的电气测控系统,也是电动汽车商品化、实用化的关键。电池管理系统(bms)是能量管理系统的核心。
(1)主要任务
保证电池组工作在安全区间,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。
(2)电池管理的核心问题就是SOC的预估问题
电动汽车电池操作窗SOC的合理范围是30~70%,这对保证电池寿命和整体的能量效率至关重要。
(3)首要任务
准确和可靠的获得电池soc是电池管理系统中最基本和最首要的任务。
2.功能
典型的电池管理系统应具备如下功能:
(1)实时采集电池系统运行状态参数。实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流以及电池组总电压等。由于电池组中的每块电池在使用中的性能和状态不一致,因而对每块电池的电压、电流和温度数据都要进行监测。
(2)确定电池的SOC。准确估测动力电池组的SOC,从而随时预报电动汽车储能电池还剩余多少能量或储能电池的SOC,使电池的SOC值控制在30%~70%的工作范围。
(3)故障诊断与报警。当蓄电池电量或能量过低需要充电时,及时报警,以防止电池过放电而损害电池的使用寿命;当电池组的温度过高,非正常工作时,及时报警,以保证蓄电池正常工作。
(4)电池组的热平衡管理。电池热管理系统是电池管理系统的有机组成部分,其功能是通过风扇等冷却系统和热电阻加热装置使电池温度处于正常工作温度范围内。
(5)一致性补偿。当电池之间有差异时,有一定措施进行补偿,保证电池组表现能力更强,并有一定的手段来显示性能不良的电池位置,以便修理替换。一般采用充电补偿功能。设计有旁路分流电路,以保证每个单体都可以充满电,这样可以减缓电池老化的进度,延长电池的使用寿命。
(6)通过总线实现各检测模块和中央处理单元的通讯。在电动汽车上实现电池管理的难点和关键在于如何根据采集的每块电池的电压、温度和充放电电流的历史数据,建立确定每块电池剩余能量的较精确的数学模型,即准确估计电动汽车蓄电池的SOC状态。
应用案例5-1 特斯拉电动汽车电池管理系统
(1)电荷平衡系统
(2)电池温度管理系统
二、纯电动汽车能量管理系统3
1.纯电动汽车能量管理系统的组成
纯电动汽车能源管理系统主要由电池输入控制器、车辆运行状态参数、车辆操纵状态、能源管理系统ECU、电池输出控制器、电机发电机系统控制等组成。
2.电池荷(充)电状态指示器
电池荷(充)电状态指示器是能源管理系统的一个重要组成。电动汽车蓄电池中储存有多少电能,还能行驶多少里程,是电动汽车行驶中必须知道的重要参数。与燃油汽车的油量表类似的仪表就是电池荷(充)电状态指示器,它是能源管理系统的一个重要装置。因此,在电动汽车中装备满足这一需求的仪表即电池荷(充)电状态指示器。
3.电池管理系统
(1)概述
1)电池管理系统是能源管理系统的一个子系统。
2)蓄电池管理系统主要任务是保持电动汽车蓄电池性能良好,并优化各蓄电池的电性能和保存、显示测试数据等。
3)目前,主要是根据实际情况,确定具体纯电动汽车的电池管理系统的功能和形式。电池管理系统包括硬件系统的设计和软件系统的设计。
①硬件的设计
取决于管理系统实现的功能。基本要实现对动力电池组的合理管理,即保证采集数据的准确性、可靠稳定的系统通信、抗干扰性。在具体实现过程中,根据设计要求确定需要采集动力电池组的数据类型;根据采集量以及精度要求确定前向通道的设计;根据通信数据量以及整车的要求选用合理的总线。
分析(主要部分加以讲解,如图所示)
A、电流转换隔离放大单元
B、电池温度传感器(数字化)
C、电压采样
D、抗干扰
案例分析:
本硬件系统是在基于ATMEGA8L单片机进行设计的。
(1) 电压采样的实现。电压采样是对电动汽车电池组的电压进行采样,每个电池组由10个单体电池构成。本系统中一共有14个电池组组成电动汽车的动力电池。原理如图所示,每个电池为一个电池组。
(2)电流采样的实现。电流的采样是估计电池SOC的主要依据。这里采用电流传感器LT308(LEM) 的测量电路
(3)温度采样的实现。温度传感器采用美国DALLAS公司继DS1820之后推出的增强型单总线数字温度传感器DS18B20。温度采集电路。
(4)抗干扰措施的设计。由于电池管理系统用在情况比较复杂的电动汽车上,所以干扰可以沿各种线路侵入单片机系统。其主要的渠道有三条:即空间干扰、供电系统干扰、过程通道干扰。干扰对单片机系统的作用可以分为三个部位:第一个部位是输入系统,干扰叠加在信号上,使数据采集误差增大,特别在前向通道的传感器接口是小电压信号输入时,此现象会更加严重;第二个部位是输出系统,使各输出信号混乱,不能正常反映单片机系统的真实输出量,导致一系列严重后果;第三个部位是单片机系统的内核,使总线上的数字信号错乱,程序运行失常,内部程序指针错乱,控制状态失灵,单片机中数据被修改,更严重的会导致死机,使系统完全崩溃。
(5)车载CAN通讯设计实现。在电池管理系统中,CAN通讯的实现是由外围设置CAN的控制器和接收器组成的通讯模块,它的设计如P185图5.9所示。
②电池管理系统的软件部分主要包括3部分,中央处理单元的管理、各个ECU的测量与控制部分、整个系统的控制部分。
A.系统内存配置
B.参数检测及滤波
C.剩余容量估计
D.CAN通信
E.数据诊断报警
三、混合动力电动汽车能量管理系统0.5
1.能量管理策略
(1)串联式混合动力电动汽车的
由于串联式混合动力电动汽车的发动机与汽车行驶工况没有直接联系,因此能量管理策略的主要目标是使发动机在最佳效率区和排放区工作。为了优化能量分配整体效率,还应考虑传动系统的动力电池、发动机、电动机和发电机等部件。串联式混合动力电动汽车有3种基本的能量管理策略。
①恒温器策略。当动力电池SOC低于设定的低门限值时,启动发动机,在最低油耗或排放点按恒功率模式输出,一部分功率用于满足车轮驱动功率要求,另一部分功率给动力电池充电。而当动力电池组SOC上升到所设定的高门限值时,发动机关闭,由电动机驱动车辆。其优点是发动机效率高、排放低,缺点是动力电池充放电频繁,加上发动机开关时的动态损耗,使得系统总体的损失功率变大,能量转换效率较低。
②功率跟踪式策略。由发动机全程跟踪车辆功率需求,只有在动力电池的SOC大于SOC设定上限时,且仅由动力电池提供的功率能满足车辆需求时,发动机才停机或怠速运行。由于动力电池容量小,动力电池充放电次数减少而使得系统内部损失减少。但是发动机必须在从低到高的较大负荷区内运行,使得发动机效率和排放不如恒温器策略。
③基本规则型策略。该策略综合了恒温器策略与功率跟踪式策略两者的优点,根据发动机负荷特性图设定了高效率工作区,根据动力电池的充放电特性设定了动力电池高效率的荷电状态范围。并设定一组控制规则,根据需求功率和SOC进行控制,以充分利用发动机和动力电池的高效率区,使其达到整体效率最高。
(2)并联式混合动力电动汽车的能量管理策略
并联式混合动力电动汽车的能量管理策略基本属于基于转矩的控制。目前主要有以下4类:
①静态逻辑门限策略。该策略通过设置车速、动力电池SOC上下限、发动机工作转矩等一组门限参数,限定动力系统各部件的工作区域,并根据车辆实时参数及预先设定的规则调整动力系统各部件的工作状态,以提高车辆整体性能。
② 瞬时优化能量管理策略。瞬时优化策略一般是采用“等效燃油消耗最少”法或“功率损失最小”法,二者原理类似。其中“等效燃油消耗最少”法将电机的等效油耗与发动机的实际油耗之和定义为名义油耗,将电机的能量消耗转换为等效的发动机油耗,得到一张类似于发动机万有特性图的电机等效油耗图。
③全局最优能量管理策略。全局最优能量管理策略是应用最优化方法和最优控制理论开发出来的混合动力系统能量分配策略,目前主要有基于多目标数学规划方法的能量管理策略、基于古典变分法的能量管理策略和基于Bellman动态规划理论的能量管理策略三种。
④模糊能量管理策略。该策略基于模糊控制方法来决策混合动力系统的工作模式和功率分配,将“专家”的知识以规则的形式输入模糊控制器中,模糊控制器将车速、电池SOC、需求功率/转矩等输入量模糊化,基于设定的控制规则来完成决策,以实现对混合动力系统的合理控制,从而提高车辆整体性能。基于模糊逻辑策略可以表达难以精确定量表达的规则;可以方便地实现不同影响因素(功率需求、SOC等)的折中;鲁棒性好。但是模糊控制器的建立主要依靠经验,无法获得全局最优。
(3)混联式混合动力电动汽车的能量管理策略
混联式混合动力电动汽车由于其特有的传动系统结构,如采用行星齿轮传动,除了采用瞬时优化能量管理策略、全局优化能量管理策略和模糊能量管理策略(与并联式混合动力汽车能量管理策略原理类似)以外,还有一些特有的能量管理策略:
①发动机恒定工作点策略。由于采用了行星齿轮机构,发动机转速可以独立于车速变化,这样使发动机工作在最优工作点,提供恒定的转矩输出,而剩余的转矩则由电动机提供。这样电动机来负责动态部分,避免了发动机动态调节带来的损失,而且与发动机相比,电动机的控制也更为灵敏,易于实现。
②发动机最优工作曲线策略。发动机工作在万有特性图中最佳油耗线上,只有当发电机电流需求超出电池的接受能力或者当电动机驱动电流需求超出电动机或电池的允许限制时,才调整发动机的工作点。
2.混合动力电动汽车的工作模式
(1)串联式混合动力电动汽车的工作模式
①纯电动模式。发动机关闭,车辆仅由蓄电池组供电、驱动。
②纯发动机模式。车辆牵引功率仅来源发动机-发电机组,而蓄电池组既不供电也不从驱动系统中吸收任何功率,电设备组用作从发动机到驱动轮的电传动系。
③混合模式。牵引功率由发动机-发电机组和蓄电池组共同提供。
④发动机牵引和蓄电池充电模式。发动机-发电机组供给向蓄电池组充电和驱动车辆所需的功率。
⑤再生制动模式。发动机-发电机组关闭,牵引电机产生的电功率用于向蓄电池组充电。
⑥蓄电池组充电模式。牵引电动机不接受功率,发动机-发电机组向蓄电池组充电。
⑦混合式蓄电池充电模式。发动机-发电机组和运行在发电机状态下的牵引电动机共同向蓄电池组充电。
(2)并联式混合动力电动汽车的工作模式
并联式混合动力电动汽车主要蕴含以下工作模式:
①纯电动模式。当混合动力电动汽车处于起步、低速等轻载工况且动力电池的电量充足时,若以发动机作为动力源,则发动机燃油效率较低,并且排放性能很差。因此,关闭发动机,由动力电池提供能量并以电机驱动车辆。但当动力电池的电量较低时,为保护电池,应当切换到行车充电模式。
②纯发动机模式。在车辆高速行驶等中等负荷时,车辆克服路面阻力运行所需的动力较小,一般情况下主要由发动机提供动力。此时,发动机可工作于高效区域,燃油效率较高。
③混合驱动模式。在加速或爬坡等大负荷情况下,当车辆行驶所需的动力超过发动机工作范围或高效区时,由电机提供辅助动力同发动机一同驱动车辆。若此时动力电池的剩余电量较低,则转换到纯发动机模式。
④行车充电模式。在车辆正常行驶等中低负荷时,若动力电池的剩余电量较低,发动机除了要提供驱动车辆所需的动力外,还要提供额外的功率通过电机发电以转换成电能给动力电池充电。
⑤再生制动模式。当混合动力电动汽车减速/制动时,发动机不工作,电机尽可能多地回收再生制动能量,剩余部分由机械制动器消耗。
⑥怠速/停车模式。在怠速/停车模式中,通常关闭发动机和电动机,但当动力电池剩余电量较低时,需要开启发动机和电机,控制发动机工作于高效区并拖动电机为动力电池充电。
四、能量管理系统的发展方向0.5
(1)如何降低成本并能准确估测电动汽车电池模块的SOC状态仍将是后期研究的重点
(2)电池模块的安全预警技术是能量管理系统的重要研究方向
(3)发展更高级的配套跟踪系统已经成为目前的研究重点
(4)研究新的动力传动配置和控制器及更具有通用性的能量管理系统已经成为目前的发展方向。
小 结:概述本节
作 业:课后习题
课 题:5.2 电动汽车再生制动能量回收系统
教学目的:理解什么是电动汽车再生制动能量回收系统
掌握再生制动能量回收的方法和类型
理解电动汽车的再生制动能量回收系统的组成和作用等
教学重点:再生制动能量回收的方法和类型
教学难点:再生制动能量回收的方法和类型
类 型:新授课
教学方法:讲练结合
课 时:4
引 入:再生制动是指电动汽车在减速制动(刹车或者下坡)时将汽车的部分动能转化为电能,转化的电能储存在储存装置中,如各种蓄电池、超级电容和超高速飞轮,最终增加电动汽车的续驶里程。如果储能器已经被完全充满,再生制动就不能实现,所需的制动力就只能由常规的制动系统提供。
一、制动能量回收方法1
制动能量回收的基本原理是先将汽车制动或减速时的一部分机械能(动能)经再生系统转换(或转移)为其它形式的能量(旋转动能、液压能、化学能等),并储存在储能器中,同时产生一定的负荷阻力使汽车减速制动;当汽车再次启动或加速时,再生系统又将储存在储能器中的能量再转换为汽车行驶所需要的动能(驱动力)。
根据储能机理不同,电动汽车制动能量回收的方法也不同,主要有3种,即飞轮储能、液压储能和电化学储能。
1.飞轮储能
飞轮储能是利用高速旋转的飞轮来储存和释放能量。
当汽车制动或减速时,先将汽车在制动或减速过程中的动能转换成飞轮高速旋转的动能;当汽车再次启动或加速时,高速旋转的飞轮又将存储的动能通过传动装置转化为汽车行驶的驱动力。
飞轮储能式制动能量回收系统主要由发动机、高速储能飞轮、增速齿轮、离合器和驱动桥组成。发动机用来提供驱动汽车的主要动力,高速储能飞轮用来回收制动能量以及作为负荷平衡装置,为发动机提供辅助的功率以满足峰值功率的要求。
2.液压储能
液压储能工作过程是先将汽车在制动或减速过程中的动能转换成液压能,并将液压能储存在液压蓄能器中;当汽车再次启动或加速时,储能系统又将蓄能器中的液压能以机械能的形式反作用于汽车,以增加汽车的驱动力。
系统由发动机、液压泵/马达、液压蓄能器、变速器、驱动桥、离合器和液压控制系统组成。
3.电化学储能
电化学储能工作原理。它是先将汽车在制动或减速过程中的动能,通过发电机转化为电能并以化学能的形式储存在储能器中;当汽车再次启动或加速时,再将储能器中的化学能通过电动机转化为汽车行驶的动能。储能器可采用蓄电池或超级电容,由发电机/电动机实现机械能和电能之间的转换。系统还包括一个控制单元,用来控制蓄电池或超级电容的充放电状态,并保证蓄电池的剩余电量在规定的范围内。
当汽车以恒定速度或加速度行驶时,电磁离合器脱开。当汽车制动时,行车制动系统开始工作,汽车减速制动,电磁离合器接合,从而接通驱动轴和变速器的输出轴。这样,汽车的动能由输出轴、离合器、驱动轴、驱动轮和从动轮传到发动机和飞轮上。制动时的机械能由电动机转换为电能,存入蓄电池。
二、制动能量回收系统的类型0.5
1.制动能量回收系统的类型因储能方法不同而不同,主要有电能式、动能式和液压式。
(1)电能式主要由发电机、电动机和蓄电池或超级电容组成,一般在电动汽车上使用;
(2)动能式主要由飞轮、无级变速器构成,一般在公交汽车上使用;
(3)液压式主要由液压泵/液压马达、蓄能器组成,一般在工程机械或大型车辆上使用。
2.在电动汽车上采取制动能量回收方法,有如下作用:
(1)在目前电动汽车的储能元件没有大的突破与发展的实际情况下,制动能量回收装置可以提高电动汽车的能量利用率,延长电动汽车的行驶里程;
(2)电制动与传统主动相结合,可以减轻传统制动器的磨损,增长其使用周期,达到降低成本的目的;
(3)可以减少汽车制动器在制动,尤其是缓速下长坡以及滑行过程中产生的热量,降低汽车制动器的热衰退,提高汽车的安全性和可靠性。
3.再生制动系统的结构与原理,由驱动轮、主减速器、变速器、电动机、AC/DC转换器、DC/DC转换器、能量储存系统以及控制器组成。
三、实例1
1.Eco-Vehicle制动控制系统
Eco-Vehicle是日本开发的一款电动车,该车制动系统使用了传统制动系统不具有的制动压力控制阀单元,控制单元安装在主缸和前后制动器之间的液压回路中,同时压力控制阀还包括主缸压力传感器和两个由制动控制器控制的电磁调节器。
2.本田EV Plus制动控制系统
本田EV Plus的制动控制系统与传统的液压(气压)制动系统有所区别,它使用电动真空泵给制动助力器提供动力源;制动过程中将回收能量传递到动力电池中。本田EV Plus的制动控制系统。
3.丰田Prius制动控制系统
丰田Prius是丰田汽车公司研制的一款混合动力轿车,它的制动系统包括能量回收制动和液压制动,能量回收制动由整车ECU控制,液压制动则是由制动控制器控制,液压制动系统,如P197图5.20所示。
4.再生—液压混合制动系统
某电动汽车的再生—液压混合制动系统,它只在前轮上进行制动能量回收,前轮上的总制动力矩大小等于电机产生的再生制动力矩与机械制动系统产生的摩擦制动力矩的和。
四、应用案例0.5
普锐斯prius于1997年10月底问世,是世界上最早实现批量生产的混合动力汽车。在人们日益关注环保的今天,普锐斯prius因革命性地降低了车辆燃耗和尾气排放,其划时代之意义与先进性得到了全世界的高度评价。2005年12月15日正式我国上市的新款普锐斯prius,是第二代普锐斯prius,它装备了新一代丰田混合动 力系统ths ii这是在上一代丰田混合动力系统ths的基础上,以能够同时提高环保性能和动力性能的"hybrid synergy drive(混合动力同步驾驶)"为概念开发的。ths ii通过提升电源系统的电压使马达功率提高到原来的1.5倍,并通过控制系统的改进解决了一系列的技术难题,从而使发动机动力与马达动力的协同增效作用得到极大程度的发挥。
新款普锐斯prius除了拥有新一代丰田混合动力系统ths ii 特有的"平滑而强劲的动力性能"和"世界顶级的环保性能"外,还拥有前卫的造型、舒适的操控性能、以及电子排档、带湿度感应器的电动变频自动空调等引人注目的卓越功能和先进装备。
丰田第三代普锐斯提供四种不同的驾驶模式,Normal为正常模式,EV-Drive模式允许驾驶者在低速状态下单纯依靠电力行驶约1.6公里;而Power(动力)模式提高油门灵敏度,使得驾驶感向跑车趋近;Eco模式则可以帮助驾驶员获得最佳的燃油经济性。
教学目的:
了解什么是电动汽车能量管理控制系统,
掌握电池管理系统的功能
理解纯电动汽车能量管理系统的组成、混合动力电动汽车的能量管理策略好工
一、电池管理系统的功能2
1.概述
电池管理系统是集监测、控制与管理为一体的复杂的电气测控系统,也是电动汽车商品化、实用化的关键。电池管理系统(bms)是能量管理系统的核心。
(1)主要任务
保证电池组工作在安全区间,提供车辆控制所需的必需信息,在出现异常时及时响应处理,并根据环境温度、电池状态及车辆需求等决定电池的充放电功率等。
(2)电池管理的核心问题就是SOC的预估问题
电动汽车电池操作窗SOC的合理范围是30~70%,这对保证电池寿命和整体的能量效率至关重要。
(3)首要任务
准确和可靠的获得电池soc是电池管理系统中最基本和最首要的任务。
2.功能
典型的电池管理系统应具备如下功能:
(1)实时采集电池系统运行状态参数。实时采集电动汽车蓄电池组中的每块电池的端电压和温度、充放电电流以及电池组总电压等。由于电池组中的每块电池在使用中的性能和状态不一致,因而对每块电池的电压、电流和温度数据都要进行监测。
(2)确定电池的SOC。准确估测动力电池组的SOC,从而随时预报电动汽车储能电池还剩余多少能量或储能电池的SOC,使电池的SOC值控制在30%~70%的工作范围。
(3)故障诊断与报警。当蓄电池电量或能量过低需要充电时,及时报警,以防止电池过放电而损害电池的使用寿命;当电池组的温度过高,非正常工作时,及时报警,以保证蓄电池正常工作。
(4)电池组的热平衡管理。电池热管理系统是电池管理系统的有机组成部分,其功能是通过风扇等冷却系统和热电阻加热装置使电池温度处于正常工作温度范围内。
(5)一致性补偿。当电池之间有差异时,有一定措施进行补偿,保证电池组表现能力更强,并有一定的手段来显示性能不良的电池位置,以便修理替换。一般采用充电补偿功能。设计有旁路分流电路,以保证每个单体都可以充满电,这样可以减缓电池老化的进度,延长电池的使用寿命。
(6)通过总线实现各检测模块和中央处理单元的通讯。在电动汽车上实现电池管理的难点和关键在于如何根据采集的每块电池的电压、温度和充放电电流的历史数据,建立确定每块电池剩余能量的较精确的数学模型,即准确估计电动汽车蓄电池的SOC状态。
应用案例5-1 特斯拉电动汽车电池管理系统
(1)电荷平衡系统
(2)电池温度管理系统
二、纯电动汽车能量管理系统3
1.纯电动汽车能量管理系统的组成
纯电动汽车能源管理系统主要由电池输入控制器、车辆运行状态参数、车辆操纵状态、能源管理系统ECU、电池输出控制器、电机发电机系统控制等组成。
2.电池荷(充)电状态指示器
电池荷(充)电状态指示器是能源管理系统的一个重要组成。电动汽车蓄电池中储存有多少电能,还能行驶多少里程,是电动汽车行驶中必须知道的重要参数。与燃油汽车的油量表类似的仪表就是电池荷(充)电状态指示器,它是能源管理系统的一个重要装置。因此,在电动汽车中装备满足这一需求的仪表即电池荷(充)电状态指示器。
3.电池管理系统
(1)概述
1)电池管理系统是能源管理系统的一个子系统。
2)蓄电池管理系统主要任务是保持电动汽车蓄电池性能良好,并优化各蓄电池的电性能和保存、显示测试数据等。
3)目前,主要是根据实际情况,确定具体纯电动汽车的电池管理系统的功能和形式。电池管理系统包括硬件系统的设计和软件系统的设计。
①硬件的设计
取决于管理系统实现的功能。基本要实现对动力电池组的合理管理,即保证采集数据的准确性、可靠稳定的系统通信、抗干扰性。在具体实现过程中,根据设计要求确定需要采集动力电池组的数据类型;根据采集量以及精度要求确定前向通道的设计;根据通信数据量以及整车的要求选用合理的总线。
分析(主要部分加以讲解,如图所示)
A、电流转换隔离放大单元
B、电池温度传感器(数字化)
C、电压采样
D、抗干扰
案例分析:
本硬件系统是在基于ATMEGA8L单片机进行设计的。
(1) 电压采样的实现。电压采样是对电动汽车电池组的电压进行采样,每个电池组由10个单体电池构成。本系统中一共有14个电池组组成电动汽车的动力电池。原理如图所示,每个电池为一个电池组。
(2)电流采样的实现。电流的采样是估计电池SOC的主要依据。这里采用电流传感器LT308(LEM) 的测量电路
(3)温度采样的实现。温度传感器采用美国DALLAS公司继DS1820之后推出的增强型单总线数字温度传感器DS18B20。温度采集电路。
(4)抗干扰措施的设计。由于电池管理系统用在情况比较复杂的电动汽车上,所以干扰可以沿各种线路侵入单片机系统。其主要的渠道有三条:即空间干扰、供电系统干扰、过程通道干扰。干扰对单片机系统的作用可以分为三个部位:第一个部位是输入系统,干扰叠加在信号上,使数据采集误差增大,特别在前向通道的传感器接口是小电压信号输入时,此现象会更加严重;第二个部位是输出系统,使各输出信号混乱,不能正常反映单片机系统的真实输出量,导致一系列严重后果;第三个部位是单片机系统的内核,使总线上的数字信号错乱,程序运行失常,内部程序指针错乱,控制状态失灵,单片机中数据被修改,更严重的会导致死机,使系统完全崩溃。
(5)车载CAN通讯设计实现。在电池管理系统中,CAN通讯的实现是由外围设置CAN的控制器和接收器组成的通讯模块,它的设计如P185图5.9所示。
②电池管理系统的软件部分主要包括3部分,中央处理单元的管理、各个ECU的测量与控制部分、整个系统的控制部分。
A.系统内存配置
B.参数检测及滤波
C.剩余容量估计
D.CAN通信
E.数据诊断报警
三、混合动力电动汽车能量管理系统0.5
1.能量管理策略
(1)串联式混合动力电动汽车的
由于串联式混合动力电动汽车的发动机与汽车行驶工况没有直接联系,因此能量管理策略的主要目标是使发动机在最佳效率区和排放区工作。为了优化能量分配整体效率,还应考虑传动系统的动力电池、发动机、电动机和发电机等部件。串联式混合动力电动汽车有3种基本的能量管理策略。
①恒温器策略。当动力电池SOC低于设定的低门限值时,启动发动机,在最低油耗或排放点按恒功率模式输出,一部分功率用于满足车轮驱动功率要求,另一部分功率给动力电池充电。而当动力电池组SOC上升到所设定的高门限值时,发动机关闭,由电动机驱动车辆。其优点是发动机效率高、排放低,缺点是动力电池充放电频繁,加上发动机开关时的动态损耗,使得系统总体的损失功率变大,能量转换效率较低。
②功率跟踪式策略。由发动机全程跟踪车辆功率需求,只有在动力电池的SOC大于SOC设定上限时,且仅由动力电池提供的功率能满足车辆需求时,发动机才停机或怠速运行。由于动力电池容量小,动力电池充放电次数减少而使得系统内部损失减少。但是发动机必须在从低到高的较大负荷区内运行,使得发动机效率和排放不如恒温器策略。
③基本规则型策略。该策略综合了恒温器策略与功率跟踪式策略两者的优点,根据发动机负荷特性图设定了高效率工作区,根据动力电池的充放电特性设定了动力电池高效率的荷电状态范围。并设定一组控制规则,根据需求功率和SOC进行控制,以充分利用发动机和动力电池的高效率区,使其达到整体效率最高。
(2)并联式混合动力电动汽车的能量管理策略
并联式混合动力电动汽车的能量管理策略基本属于基于转矩的控制。目前主要有以下4类:
①静态逻辑门限策略。该策略通过设置车速、动力电池SOC上下限、发动机工作转矩等一组门限参数,限定动力系统各部件的工作区域,并根据车辆实时参数及预先设定的规则调整动力系统各部件的工作状态,以提高车辆整体性能。
② 瞬时优化能量管理策略。瞬时优化策略一般是采用“等效燃油消耗最少”法或“功率损失最小”法,二者原理类似。其中“等效燃油消耗最少”法将电机的等效油耗与发动机的实际油耗之和定义为名义油耗,将电机的能量消耗转换为等效的发动机油耗,得到一张类似于发动机万有特性图的电机等效油耗图。
③全局最优能量管理策略。全局最优能量管理策略是应用最优化方法和最优控制理论开发出来的混合动力系统能量分配策略,目前主要有基于多目标数学规划方法的能量管理策略、基于古典变分法的能量管理策略和基于Bellman动态规划理论的能量管理策略三种。
④模糊能量管理策略。该策略基于模糊控制方法来决策混合动力系统的工作模式和功率分配,将“专家”的知识以规则的形式输入模糊控制器中,模糊控制器将车速、电池SOC、需求功率/转矩等输入量模糊化,基于设定的控制规则来完成决策,以实现对混合动力系统的合理控制,从而提高车辆整体性能。基于模糊逻辑策略可以表达难以精确定量表达的规则;可以方便地实现不同影响因素(功率需求、SOC等)的折中;鲁棒性好。但是模糊控制器的建立主要依靠经验,无法获得全局最优。
(3)混联式混合动力电动汽车的能量管理策略
混联式混合动力电动汽车由于其特有的传动系统结构,如采用行星齿轮传动,除了采用瞬时优化能量管理策略、全局优化能量管理策略和模糊能量管理策略(与并联式混合动力汽车能量管理策略原理类似)以外,还有一些特有的能量管理策略:
①发动机恒定工作点策略。由于采用了行星齿轮机构,发动机转速可以独立于车速变化,这样使发动机工作在最优工作点,提供恒定的转矩输出,而剩余的转矩则由电动机提供。这样电动机来负责动态部分,避免了发动机动态调节带来的损失,而且与发动机相比,电动机的控制也更为灵敏,易于实现。
②发动机最优工作曲线策略。发动机工作在万有特性图中最佳油耗线上,只有当发电机电流需求超出电池的接受能力或者当电动机驱动电流需求超出电动机或电池的允许限制时,才调整发动机的工作点。
2.混合动力电动汽车的工作模式
(1)串联式混合动力电动汽车的工作模式
①纯电动模式。发动机关闭,车辆仅由蓄电池组供电、驱动。
②纯发动机模式。车辆牵引功率仅来源发动机-发电机组,而蓄电池组既不供电也不从驱动系统中吸收任何功率,电设备组用作从发动机到驱动轮的电传动系。
③混合模式。牵引功率由发动机-发电机组和蓄电池组共同提供。
④发动机牵引和蓄电池充电模式。发动机-发电机组供给向蓄电池组充电和驱动车辆所需的功率。
⑤再生制动模式。发动机-发电机组关闭,牵引电机产生的电功率用于向蓄电池组充电。
⑥蓄电池组充电模式。牵引电动机不接受功率,发动机-发电机组向蓄电池组充电。
⑦混合式蓄电池充电模式。发动机-发电机组和运行在发电机状态下的牵引电动机共同向蓄电池组充电。
(2)并联式混合动力电动汽车的工作模式
并联式混合动力电动汽车主要蕴含以下工作模式:
①纯电动模式。当混合动力电动汽车处于起步、低速等轻载工况且动力电池的电量充足时,若以发动机作为动力源,则发动机燃油效率较低,并且排放性能很差。因此,关闭发动机,由动力电池提供能量并以电机驱动车辆。但当动力电池的电量较低时,为保护电池,应当切换到行车充电模式。
②纯发动机模式。在车辆高速行驶等中等负荷时,车辆克服路面阻力运行所需的动力较小,一般情况下主要由发动机提供动力。此时,发动机可工作于高效区域,燃油效率较高。
③混合驱动模式。在加速或爬坡等大负荷情况下,当车辆行驶所需的动力超过发动机工作范围或高效区时,由电机提供辅助动力同发动机一同驱动车辆。若此时动力电池的剩余电量较低,则转换到纯发动机模式。
④行车充电模式。在车辆正常行驶等中低负荷时,若动力电池的剩余电量较低,发动机除了要提供驱动车辆所需的动力外,还要提供额外的功率通过电机发电以转换成电能给动力电池充电。
⑤再生制动模式。当混合动力电动汽车减速/制动时,发动机不工作,电机尽可能多地回收再生制动能量,剩余部分由机械制动器消耗。
⑥怠速/停车模式。在怠速/停车模式中,通常关闭发动机和电动机,但当动力电池剩余电量较低时,需要开启发动机和电机,控制发动机工作于高效区并拖动电机为动力电池充电。
四、能量管理系统的发展方向0.5
(1)如何降低成本并能准确估测电动汽车电池模块的SOC状态仍将是后期研究的重点
(2)电池模块的安全预警技术是能量管理系统的重要研究方向
(3)发展更高级的配套跟踪系统已经成为目前的研究重点
(4)研究新的动力传动配置和控制器及更具有通用性的能量管理系统已经成为目前的发展方向。
小 结:概述本节
作 业:课后习题
课 题:5.2 电动汽车再生制动能量回收系统
教学目的:理解什么是电动汽车再生制动能量回收系统
掌握再生制动能量回收的方法和类型
理解电动汽车的再生制动能量回收系统的组成和作用等
教学重点:再生制动能量回收的方法和类型
教学难点:再生制动能量回收的方法和类型
类 型:新授课
教学方法:讲练结合
课 时:4
引 入:再生制动是指电动汽车在减速制动(刹车或者下坡)时将汽车的部分动能转化为电能,转化的电能储存在储存装置中,如各种蓄电池、超级电容和超高速飞轮,最终增加电动汽车的续驶里程。如果储能器已经被完全充满,再生制动就不能实现,所需的制动力就只能由常规的制动系统提供。
一、制动能量回收方法1
制动能量回收的基本原理是先将汽车制动或减速时的一部分机械能(动能)经再生系统转换(或转移)为其它形式的能量(旋转动能、液压能、化学能等),并储存在储能器中,同时产生一定的负荷阻力使汽车减速制动;当汽车再次启动或加速时,再生系统又将储存在储能器中的能量再转换为汽车行驶所需要的动能(驱动力)。
根据储能机理不同,电动汽车制动能量回收的方法也不同,主要有3种,即飞轮储能、液压储能和电化学储能。
1.飞轮储能
飞轮储能是利用高速旋转的飞轮来储存和释放能量。
当汽车制动或减速时,先将汽车在制动或减速过程中的动能转换成飞轮高速旋转的动能;当汽车再次启动或加速时,高速旋转的飞轮又将存储的动能通过传动装置转化为汽车行驶的驱动力。
飞轮储能式制动能量回收系统主要由发动机、高速储能飞轮、增速齿轮、离合器和驱动桥组成。发动机用来提供驱动汽车的主要动力,高速储能飞轮用来回收制动能量以及作为负荷平衡装置,为发动机提供辅助的功率以满足峰值功率的要求。
2.液压储能
液压储能工作过程是先将汽车在制动或减速过程中的动能转换成液压能,并将液压能储存在液压蓄能器中;当汽车再次启动或加速时,储能系统又将蓄能器中的液压能以机械能的形式反作用于汽车,以增加汽车的驱动力。
系统由发动机、液压泵/马达、液压蓄能器、变速器、驱动桥、离合器和液压控制系统组成。
3.电化学储能
电化学储能工作原理。它是先将汽车在制动或减速过程中的动能,通过发电机转化为电能并以化学能的形式储存在储能器中;当汽车再次启动或加速时,再将储能器中的化学能通过电动机转化为汽车行驶的动能。储能器可采用蓄电池或超级电容,由发电机/电动机实现机械能和电能之间的转换。系统还包括一个控制单元,用来控制蓄电池或超级电容的充放电状态,并保证蓄电池的剩余电量在规定的范围内。
当汽车以恒定速度或加速度行驶时,电磁离合器脱开。当汽车制动时,行车制动系统开始工作,汽车减速制动,电磁离合器接合,从而接通驱动轴和变速器的输出轴。这样,汽车的动能由输出轴、离合器、驱动轴、驱动轮和从动轮传到发动机和飞轮上。制动时的机械能由电动机转换为电能,存入蓄电池。
二、制动能量回收系统的类型0.5
1.制动能量回收系统的类型因储能方法不同而不同,主要有电能式、动能式和液压式。
(1)电能式主要由发电机、电动机和蓄电池或超级电容组成,一般在电动汽车上使用;
(2)动能式主要由飞轮、无级变速器构成,一般在公交汽车上使用;
(3)液压式主要由液压泵/液压马达、蓄能器组成,一般在工程机械或大型车辆上使用。
2.在电动汽车上采取制动能量回收方法,有如下作用:
(1)在目前电动汽车的储能元件没有大的突破与发展的实际情况下,制动能量回收装置可以提高电动汽车的能量利用率,延长电动汽车的行驶里程;
(2)电制动与传统主动相结合,可以减轻传统制动器的磨损,增长其使用周期,达到降低成本的目的;
(3)可以减少汽车制动器在制动,尤其是缓速下长坡以及滑行过程中产生的热量,降低汽车制动器的热衰退,提高汽车的安全性和可靠性。
3.再生制动系统的结构与原理,由驱动轮、主减速器、变速器、电动机、AC/DC转换器、DC/DC转换器、能量储存系统以及控制器组成。
三、实例1
1.Eco-Vehicle制动控制系统
Eco-Vehicle是日本开发的一款电动车,该车制动系统使用了传统制动系统不具有的制动压力控制阀单元,控制单元安装在主缸和前后制动器之间的液压回路中,同时压力控制阀还包括主缸压力传感器和两个由制动控制器控制的电磁调节器。
2.本田EV Plus制动控制系统
本田EV Plus的制动控制系统与传统的液压(气压)制动系统有所区别,它使用电动真空泵给制动助力器提供动力源;制动过程中将回收能量传递到动力电池中。本田EV Plus的制动控制系统。
3.丰田Prius制动控制系统
丰田Prius是丰田汽车公司研制的一款混合动力轿车,它的制动系统包括能量回收制动和液压制动,能量回收制动由整车ECU控制,液压制动则是由制动控制器控制,液压制动系统,如P197图5.20所示。
4.再生—液压混合制动系统
某电动汽车的再生—液压混合制动系统,它只在前轮上进行制动能量回收,前轮上的总制动力矩大小等于电机产生的再生制动力矩与机械制动系统产生的摩擦制动力矩的和。
四、应用案例0.5
普锐斯prius于1997年10月底问世,是世界上最早实现批量生产的混合动力汽车。在人们日益关注环保的今天,普锐斯prius因革命性地降低了车辆燃耗和尾气排放,其划时代之意义与先进性得到了全世界的高度评价。2005年12月15日正式我国上市的新款普锐斯prius,是第二代普锐斯prius,它装备了新一代丰田混合动 力系统ths ii这是在上一代丰田混合动力系统ths的基础上,以能够同时提高环保性能和动力性能的"hybrid synergy drive(混合动力同步驾驶)"为概念开发的。ths ii通过提升电源系统的电压使马达功率提高到原来的1.5倍,并通过控制系统的改进解决了一系列的技术难题,从而使发动机动力与马达动力的协同增效作用得到极大程度的发挥。
新款普锐斯prius除了拥有新一代丰田混合动力系统ths ii 特有的"平滑而强劲的动力性能"和"世界顶级的环保性能"外,还拥有前卫的造型、舒适的操控性能、以及电子排档、带湿度感应器的电动变频自动空调等引人注目的卓越功能和先进装备。
丰田第三代普锐斯提供四种不同的驾驶模式,Normal为正常模式,EV-Drive模式允许驾驶者在低速状态下单纯依靠电力行驶约1.6公里;而Power(动力)模式提高油门灵敏度,使得驾驶感向跑车趋近;Eco模式则可以帮助驾驶员获得最佳的燃油经济性。